Osteopontin promotes host defense during Klebsiella pneumoniae-induced pneumonia.

نویسندگان

  • G J W van der Windt
  • J J Hoogerwerf
  • A F de Vos
  • S Florquin
  • T van der Poll
چکیده

Klebsiella pneumoniae is a common cause of nosocomial pneumonia. Osteopontin (OPN) is a phosphorylated glycoprotein involved in inflammatory processes, some of which is mediated by CD44. The aim of this study was to determine the role of OPN during K. pneumoniae-induced pneumonia. Wild-type (WT) and OPN knockout (KO) mice were intranasally infected with 10⁴ colony forming units of K. pneumoniae, or administered Klebsiella lipopolysaccharides (LPS). In addition, recombinant OPN (rOPN) was intranasally administered to WT and CD44 KO mice. During Klebsiella pneumonia, WT mice displayed elevated pulmonary and plasma OPN levels. OPN KO and WT mice showed similar pulmonary bacterial loads 6 h after infection; thereafter, Klebsiella loads were higher in lungs of OPN KO mice and the mortality rate in this group was higher than in WT mice. Early neutrophil recruitment into the bronchoalveolar space was impaired in the absence of OPN after intrapulmonary delivery of either Klebsiella bacteria or Klebsiella LPS. Moreover, rOPN induced neutrophil migration into the bronchoalveolar space, independent from CD44. In vitro, OPN did not affect K. pneumoniae growth or neutrophil function. In conclusion, OPN levels were rapidly increased in the bronchoalveolar space during K. pneumoniae pneumonia, where OPN serves a chemotactic function towards neutrophils, thereby facilitating an effective innate immune response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteopontin impairs host defense during pneumococcal pneumonia.

BACKGROUND Streptococcus pneumoniae is the most frequently isolated pathogen responsible for community-acquired pneumonia. Osteopontin is involved in inflammation during both innate and adaptive immunity. METHODS To determine the role of osteopontin in the host response during pneumococcal pneumonia, osteopontin knockout (KO) and normal wild-type (WT) mice were intranasally infected with viab...

متن کامل

Receptor for Advanced Glycation End Products (RAGE) Serves a Protective Role during Klebsiella pneumoniae - Induced Pneumonia

Klebsiella species is the second most commonly isolated gram-negative organism in sepsis and a frequent causative pathogen in pneumonia. The receptor for advanced glycation end products (RAGE) is expressed on different cell types and plays a key role in diverse inflammatory responses. We here aimed to investigate the role of RAGE in the host response to Klebsiella (K.) pneumoniae pneumonia and ...

متن کامل

Innate Lymphocyte/Ly6Chi Monocyte Crosstalk Promotes Klebsiella Pneumoniae Clearance

Increasing antibiotic resistance among bacterial pathogens has rendered some infections untreatable with available antibiotics. Klebsiella pneumoniae, a bacterial pathogen that has acquired high-level antibiotic resistance, is a common cause of pulmonary infections. Optimal clearance of K. pneumoniae from the host lung requires TNF and IL-17A. Herein, we demonstrate that inflammatory monocytes ...

متن کامل

Both TRIF- and MyD88-dependent signaling contribute to host defense against pulmonary Klebsiella infection.

Klebsiella pneumoniae causes extensive lung damage. TLR signaling involves adaptors TRIF and MyD88. However, the relative contribution of TRIF and MyD88 signaling in host defense against pulmonary K. pneumoniae infection has not been elucidated. Therefore, we investigated the role of TRIF and MyD88 in K. pneumoniae pneumonia. TRIF(-/-) mice infected with K. pneumoniae showed impaired survival a...

متن کامل

Interaction of Lipocalin 2, Transferrin, and Siderophores Determines the Replicative Niche of Klebsiella pneumoniae during Pneumonia

UNLABELLED Pathogenic bacteria require iron for replication within their host. Klebsiella pneumoniae and other Gram-negative pathogens produce the prototypical siderophore enterobactin (Ent) to scavenge iron in vivo. In response, mucosal surfaces secrete lipocalin 2 (Lcn2), an innate immune protein that binds Ent to disrupt bacterial iron acquisition and promote acute inflammation during coloni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 36 6  شماره 

صفحات  -

تاریخ انتشار 2010